Successful Scale-up of Industrial Fermentations: Process Development, Engineering and Economics

by

Edi D. Eliezer
Principal
BioPrizM*

* Now Sr. V.P. Conagen Inc.

Key Factors for Bioprocess Technology Selection, Scale-up and Engineering of New Facilities

- Biocatalyst
- Raw Materials
- Process Technologies
- Products
- Scale
- Economics

Success is through
Early Integration of
Process Development, Engineering & Economics
From R&D to Commercial Manufacturing Facility
Key Project Phases – Operations & Engineering perspectives

R&D

Technology Transfer (Scale-up)

Conceptual Design

Detailed Engineering

Marketing Study

Feasibility Study

Construction

Qualification Masterplan, Commissioning

Start-up

• Cost estimate
• Decision on project

Commercial Mfg.

Cost Impact of Key Engineering Project Phases

Key Success Factor:

Typical BioProcess Block Flow Diagram
Basis for Facility Concept Design

Media Prep / Sterilization Solutions Prep/Storage

Fermentation or Bioconversion

Recovery & Purification

Bio / Microbial Labs.

Utilities:
- Process Water
- Steam
- Cooling Water
- Chilled Water
- Compressed Air
- Electrical
- HVAC
- Waste Systems

Warehouse:
- Raw Materials
- Product

Finishing

BioProcess Design Basis & Scale-up - Upstream
Fermentation & Bioreactor Critical Design Parameters

Biological & Chemical
- Culture type
- Containment
- Operating and Optimal ranges for:
 - pH, Temperature
 - Foam type & control
 - Shear, Viscosity
 - DO₂, CO₂, Pressure

Process Engineering
- Process type (batch, continuous, fed-batch)
- Oxygen Transfer Rate (OTR)
- Heat Transfer
- Bioreactor type & Scale-up
- Instrumentation & Controls
- Sterile/ rDNA Design, MOC
- Media Prep./ Sterilization
- CIP & Waste systems
Typical Bioreactor Designs

- STRs
- JLR
- BC
- Bioconversion reactors

Microbial Cultures in Submerged Fermentation Systems

Cultures or Biocatalysts in Immobilized Systems

Bioreactor Design Selection – Industrial Realities

Biocatalyst, Process KPI & Scale: All Inter-related

Industrial-scale Limitations

Microbial Cultures
- Bacteria
- Yeast
- Fungal

Maximum Fermentor Size vs. Major KPI: OURmax

BioPritzM
Commercial Fermentation Scale-up Challenges & Options

Case study of BC

- **Scale-up Challenges**
 - Mixing effects on Metabolism & Productivity:
 - Pressure
 - Gradients/oscillations-Gas: \(O_2, CO_2\)
 - Grad/oscil- Liq: Glucose, NH3, pH
 - Temperature Control

- **Risk Management & Solutions**
 - Scaled-Down tests at Lab/Pilot
 - Simulate Micro/biology & Macro/Eng’ng.
 - FMEA, 6-Sigma approaches

Fermentation Facility Definition: Risks & Economics

Selection of Bioreactor Design, Size & Quantities

<table>
<thead>
<tr>
<th>Design & Economic Selection between:</th>
<th>Industrial-scale Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 X 400 m³ ……. $</td>
<td>OURmax (mM/l.hr) vs. Major KPI: OURmax</td>
</tr>
<tr>
<td>• 2 x 200 m³ ……. $$</td>
<td>Maximum Fermentor Size</td>
</tr>
<tr>
<td></td>
<td>Risks (KPI, $)</td>
</tr>
<tr>
<td></td>
<td>Vm (m³)</td>
</tr>
</tbody>
</table>

- **Technology Risks (BRX)**
 - Scale-up risks
 - Operational flexibility, utilities
 - Costs: CAPEX, OPEX

BioPrizM
Which Key Performance Indicators (KPI’s) to select?

- High Cell Density, Maximum Fermentation Titer?
 *Not Always! Don’t disregard industrial limitations!*

- Yield of Feedstock Bioconversion can be a major KPI for Cost of Goods Sold (COGs), but impact can change with Product, Technology & Scale
BioProcess Modeling is Key for Economic Optimizations

- Modeling and Cost Sensitivity Analysis:
 Need Simulation by Professionals Experienced in Real Commercial Scenarios for Reliable Estimation of Facility CAPEX & OPEX

- Industrial Process Modeling is a major Guide for R&D and Project Objectives... i.e. What to Focus on?
Process & Project Engineering, Economics and Strategy

COGS vs. Capacity, Media Costs, Titer

- **COGS vs. Capacity at Various Titers & Media Costs**
- **COGS vs. Titers at Various Capacities**

- Economic analysis defines “Critical” or Minimum **Capacity** or **Titer** for Optimum COGS

Process & Project Engineering, Economics and Strategy

Costs vs. Scale. Product impact on COGS Distribution

- COGS decreases with increased Capacity or Scale.
- **CAPEX** % of COGS changes with Scale, Technology & Product

Product-type impact

- **Raw Materials** cost % of COGS in Industrial Biotech is **More** than for BioPharma
- **CAPEX** % of COGS in Industrial Biotech is **Less** than BioPharma.
Conclusions
BioProcess Commercialization: Success factors

- **Integrate, early on**, R&D, Engineering and Manufacturing **Teams**
- Assess each Bioprocess option from an **Integrated industrial** view
- Select optimal option based on **Scale-up** reliability & economics
- Use **Modeling** to evaluate each Bioprocess impact on **Facility** Design, Utilities & Costs
- Perform a **Conceptual Design** with preliminary CAPEX and OPEX

THANK YOU!

Edi D. Eliezer
is now:
Sr. V.P. Bioprocess Engineering & Manufacturing
Conagen Inc.
Bedford, MA

Cell: (856) 904.2428