Molecular Breeding & Crop Improvement of Jatropha and Guayule Hybrid Cultivars

Eric J. Mathur, Chief Science Officer & Senior Vice President
Pacific Rim BIO Summit, San Diego, California. December 8th, 2014
Plant domestication dates back to 8000 BC.
Crop improvement requires diverse germplasm

- Present day crops are improved versions of their wild ancestors
- Diverse germplasm is required for crop domestication
- Jatropha & Guayule landraces lacked genetic diversity

Tomato 100X
Rubber 400X
Maize 25X
Jatropha 50X
Guayule 10X
The era of plant genomics has arrived

Modern Genome Tools
- Physical & genetic maps
- Germplasm phylogeny (GBS)
- Plant re-sequencing
- SNP & gene discovery
- RNA-Seq & proteomics
- Trait: marker association (GWAS)
- Genomic Selection (GS)

Commercial Impact
- Accelerate improvements
- Maximize genetic potential
- Yield preservation
- Consistent productivity
- Uniform plant architecture
- IP protection - DNA barcodes
- Predictive breeding

The DNA sequencing explosion

The Economist

$3,000,000,000

$1,000
Jatropha produces tri-carpelate fruits with high oilseed content

- Exceptional fatty acid profile
- Excellent oxidative stability
- Good cold flow properties
- High value specialty chemicals
- No competition with food security

<table>
<thead>
<tr>
<th>Oilseed</th>
<th>Cloudpoint</th>
<th>Stability (hrs@110°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canola</td>
<td>-3°C</td>
<td>14.1</td>
</tr>
<tr>
<td>Jatropha</td>
<td>3°C</td>
<td>13.1</td>
</tr>
<tr>
<td>Soy</td>
<td>1°C</td>
<td>5.3</td>
</tr>
<tr>
<td>Palm</td>
<td>13°C</td>
<td>13.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Jatropha</th>
<th>Palm</th>
<th>Canola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td>19%</td>
<td>49%</td>
<td>6%</td>
</tr>
<tr>
<td>Unsaturated</td>
<td>81%</td>
<td>51%</td>
<td>94%</td>
</tr>
<tr>
<td>18:1</td>
<td>36%</td>
<td>42%</td>
<td>64%</td>
</tr>
<tr>
<td>18:2</td>
<td>45%</td>
<td>9%</td>
<td>19%</td>
</tr>
</tbody>
</table>
Jatropha domestication: case study

A genetic bottleneck in *Jatropha* prevented early domestication

Jatropha oil applications:
biodiesel, jet fuel, specialty oils & chemicals

soaps
candles
medicinals
living fence
fertilizers

Jatropha has been cultivated for centuries; the Portuguese recognized it’s value
Jatropha germplasm from Central America exhibits high phenotypic diversity

- Extreme branching
- Apical dominance
- Dwarfs
- Fungal & rust resistance
- Dehiscent
- Indehiscent
- Female only flowers

© 2014 SGB Inc
DNA barcoding: High throughput digital genotyping

- Leaf Punches
- Tissue Lysis
- HTP DNA Extraction
- DNA Marker Sequencing
- High Resolution Melt
- Liquid Handling

© 2014 SGB Inc
DNA barcoding: HRM genotyping with SSR markers

PyroMark Sequencing
Population structure deduced from SSR markers with HRM

- 12 distinct clades
- Identifies best parental lines
- Maximizes hybrid vigor
- Increases plant productivity
- Improves plant health
- Assures yield preservation
- Provides IP protection
Jatropha hybrid technology improves profitability

Higher Yields
Hybrid vigor; enhanced seed, oil & biomass yield

Increased Profitability
Agronomic efficiencies better economics & higher productivity

Stress Tolerance
Improved WUE & NUE disease & pest resistance

Preserve Yield Potential
Maintain yield under seasonally adverse conditions

Introduction of hybrid corn resulted in 400% yield gain

Commercial Variety | **SGB Hybrid**
50-fold oilseed yield improvement in Jatropha by maximizing heterosis

800 accession families form 18 heterotic clades with filtered SNPs
Yulex is a fully integrated business combining patented technology, platform for rapid crop improvement, and product demand across multiple vertical markets.

CROP SCIENCE-AG
- Proven crop improvement platform
 - Molecular Breeding & Agrigenomics
 - Hybrid testing & development
 - Agronomic & Crop production research
 - Seed multiplication & processing
 - Sustainable commercial production

BIOPROCESSING
- Patented extraction technologies
 - Clean bioprocessing
 - GEN I Aqueous-based extraction
 - Latex emulsion
 - GEN II Solvent-based extraction
 - Biorubber, Resins, Bagasse

MATERIALS SCIENCE
- Value creation and market pull
 - Application development
 - Material enhancement
 - Co-branded products
 - Yulex Brand for high-value markets
Yulex emulsion & solid rubber applications

Yulex provides a safer, natural rubber for latex-allergy sensitive individuals.

Latex-Allergy Safe
Marginal genetic improvement over 60 years of breeding

- Narrow germplasm base
- Perennial crop
- High rubber yields require 18 to 24 months
- Multi-year trialing to evaluate and realize yields
- Landraces lack uniformity
- Complicated genetics
Guayule bottleneck: AZ lineage arose from only 5 bulked plants.
Germplasm diversity exists at the center of origin of *Parthenium argentatum*

A severe genetic bottleneck exists in commercial Guayule germplasm

Selected wild germplasm is highly divergent

Guayule center of origin is in Northern Mexico
Yulex harnessed guayule genetics to produce pure-line hybrids

- Traditional breeding methods have been flawed
 - low trait heritability
 - variability in germplasm
 - 30% genetic dilution with each cycle
 - apomixis restricts genetic gain
 - ploidy & aneuploidy complicate breeding

- Yulex leveraged facultative apomixis to produce true hybrids
 - Hybrids are uniform plants with consistent productivity
 - Hybrids can produce clonal progeny
 - Molecular breeding tools maximize hybrid yield & vigor

- Guayule hybrids represent disruptive technology
 - 15-fold improvement in rubber yield uniformity
 - IP portfolio on hybrid creation, selection & seed multiplication

<table>
<thead>
<tr>
<th>Hybrid Plant Number</th>
<th>Triplicate Extractions</th>
<th>Average % Total Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>F15-9</td>
<td>4.1</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>F15-11</td>
<td>4.6</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>F15-12</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

*1 yr old plants

© 2014 Yulex Corporation

Four distinct clades
Yulex Guayule hybrids demonstrate high yield performance

Three factors driving higher yield potential of Guayule:

1) Plant rubber content
2) Plant Weight
3) Total Biomass

<table>
<thead>
<tr>
<th>Yulex Hybrids</th>
<th>Plant Rubber Content (%)</th>
<th>Total Rubber/plant (g)</th>
<th>Total Biomass* (MT/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Performer</td>
<td>9.5</td>
<td>52.5</td>
<td>54.3</td>
</tr>
<tr>
<td>Top 10</td>
<td>8.4</td>
<td>30.0</td>
<td>49.1</td>
</tr>
<tr>
<td>AZ-6 Check</td>
<td>6.0</td>
<td>18.5</td>
<td>24.8</td>
</tr>
</tbody>
</table>

*Fresh Weight of defoliated 24 month-old plants
Acknowledgements

Dilara Ally
Marcela Caravalo
Adi Ramon
Aparna Vedula
Craig Gaines
Benito Juarez
Wayne Green
Matt Kent
Brett Roberts
Ernesto Becerril
Theresa Grebert
Grant Aldridge
James DeBenedictis
Jacob Gentillion
Jake Mandel
Victoria Hanna
Caitlan Hahn
Robert Schmidt