Enhanced microbial lipid production with genetically modified yeast and fungus

Pacific Rim Summit on Industrial Biotechnology and Bioenergy 2014

Kari Koivuranta, Marilyn Wiebe, Laura Ruohonen and Merja Penttilä
VTT Technical Research Centre of Finland
VTT Technical Research Centre of Finland

- VTT is the biggest multi-technological applied research organisation in Northern Europe
- Cross-disciplinary technological and business expertise
- A not-for-profit and impartial research centre

VTT offering covers everything from strain constructions to the end product testing

- Host selection
- Pathway evaluation with metabolic modelling and bioinformatics
- Enzyme discovery, characterization, engineering, synthetic enzymes
- Genetic engineering, synthetic biology
- Systems biology tools for identifying key bottle necks
- Analytics, automation and HTS
- Bioprocess development
- Application testing
Industrial Biotechnology at VTT

- Engineering of broad range of production organisms to the desired product, from PoC to industrial use
- Expertise in non-conventional production organisms: plant, algae, fungi, bacteria

Product portfolio
- Various alcohols
- Organic acids; lactic acid, xylonic acid, arabinioic acid, glycolic acid, galactaric acid, galactonic acid, etc.
- Terpenes, volatile hydrocarbons
- Triacylglycerides and other lipid derivatives
Triacylglycerol (TAG) is raw material for biodiesel and renewable diesel

- Vegetable (and other bio-based) oils are mainly triacylglycerols (Oil = lipid = TAG)
- Triacylglycerol (TAG) contains three fatty acid residues esterified with a glycerol molecule

R1, R2, R3 denote aliphatic fatty acid chain (saturated or unsaturated). Usually >15 carbons. E.g. oleic acid.

- TAG is used as raw material for biodiesel (transesterified lipids) and renewable diesel (hydrogenated alkanes)
- Composition of vegetable oils is similar to composition of microbial oils => microbial oils can replace vegetable oils
Microbial lipid production

- Some microbes (yeast, filamentous fungi, algae) can produce lipids over 20% of their biomass, i.e. they are **oleaginous** microbes.
- The produced lipids are mainly triacylglycerols (TAGs).
- Lipid production requires a lot of carbon and cofactors (especially NADPH). At most **32 g of TAG** can be produced from **100 g glucose** (assuming that all glucose is used for TAG production). **In practise, the max yield has been approx. 22%**.

\[\text{100 g glucose} \rightarrow \text{32 g TAG} \]
Triacylglycerol biosynthesis

Glycolysis

Production of cytosolic acetyl-CoA

Synthesis of fatty acids

Synthesis of triacylglycerol
Production of cytosolic acetyl-CoA differs in oleaginous and non-oleaginous microbes

Cytosolic acetyl-CoA is produced in oleaginous microbes via citrate and in non-oleaginous microbes via acetaldehyde.

With high C/N ratio high lipid production

Under nitrogen limited conditions decrease of AMP results in decrease of IDH activity → citrate accumulates.
Engineering of microbial strains for oil production

Cryptococcus curvatus (yeast) and *Mucor circinelloides* (fungus) were genetically engineered by over-expressing four genes in different combinations. The codon optimized genes were expressed under endogenous promoters and terminators.

Pathway:

1. Glucose / xylose
2. Pyruvate
3. Acetyl-CoA
4. Acyl-ACP/CoA
5. Glycerol + 3 x acyl-CoA
6. Triacylglycerol

Expression:

- PDC1, ALD6, ACS2 expression
- PDAT expression

PDAT = phospholipid-diaclyglycerol acyltransferase
Bioreactor cultivations with *C. curvatus* transformants with C/N ratio of 80

TAG titre (max 21.8 g/l)

Yield on biomass (max 50.0%)

![Graphs showing TAG production and yield on biomass for glucose and xylose]
Bioreactor cultivations with *C. curvatus* transformants with C/N ratio of 80

Yield on substrate (max 23.3%)

![Yield on substrate graph]

Production rate (max 0.18 g/l/h)

![Production rate graph]
Bioreactor cultivations with \textit{C. curvatus} transformants with C/N ratio of 80

• The ALD+PDAT and the ALD+ACS+PDAT transformants produced more triacylglycerol than wild type \textit{C. curvatus} from glucose or xylose.

• The yields of triacylglycerol on both biomass and substrate were higher in the transformants than in wild type \textit{C. curvatus}, but the rate of triacylglycerol production was lower.
 • Titre and yield on substrate were improved by approximately 25\% by addition of the \textit{ALD6} and \textit{PDAT} genes to \textit{C. curvatus}

• The ALD+PDAT transformant was a better triacylglycerol producer than the ALD+ACS+PDAT transformant

• The improvements were generally larger on glucose than on xylose.
Bioreactor cultivations with *M. circinelloides* transformants with C/N ratio of 60

TAG titre (max 11.5 g/L)

Yield on substrate (max 26.0%)

- TAG titre (% change relative to control)
- Yield on substrate (% change relative to control)

Glucose	Xylose
 PDAT | ALD+ACS+PDAT

- Glucose
- Xylose

10/12/2014
Bioreactor cultivations with *M. circinelloides* transformants with C/N ratio of 60

Yield on biomass (max 62.6%)

Production rate (max 0.10 g/l/h)
Bioreactor cultivations with *M. circinelloides* transformants with C/N ratio of 60

- The PDAT and the ALD+ACS+PDAT transformants generally produced more triacylglycerol, at higher yields, than wild type *M. circinelloides* from glucose.
- The PDAT transformant also produced more triacylglycerol, at higher yield, than wild type *M. circinelloides* from xylose.
- The rate of triacylglycerol production was lower than wild type *M. circinelloides* on glucose, but improved on xylose with the PDAT transformant.
Conclusions

- Targeted genetic modifications to both *C. curvatus* and *M. circinelloides* can improve not only the triacylglycerol content of the cells and the titre of triacylglycerol produced, but also the yield of triacylglycerol from carbohydrate.

- Both *C. curvatus* and *M. circinelloides* use xylose as well as glucose as a substrate for triacylglycerol production.

- Non-conventional, oleaginous yeast and fungi can be genetically engineered.
TECHNOLOGY FOR BUSINESS