Simultaneous Co-Fermentation of Mixed Sugars: A Promising Strategy for Producing Cellulosic Biofuels and Chemicals

Na Wei
PI: Yong-Su Jin
Energy Biosciences Institute /Institute for Genomic Biology
University of Illinois at Urbana-Champaign
Corn ethanol vs. Cellululosic ethanol

Corn starch
- Gelatinization
- Amylases
- Glucose
- **yeast**
- Ethanol + CO₂

- Single sugar fermentation
- No fermentation inhibitors
- Easy high loading

Cellulosic biomass
- Pretreatment + Cellulases
- Glucose + Xylose + Acetate + Fermentation inhibitors
- **yeast**
- Ethanol + CO₂

- **Mixed** sugar fermentation
- Fermentation inhibitors
- Difficulties in high loading
Saccharomyces cerevisiae: a workhorse strain for industrial ethanol production

- The most widely used yeast since ancient times in baking and brewing
- Osmotolerant and ethanol-tolerant
- Numerous genetic/genomic tools are available
 - Overexpression / Knockout
 - Expression of heterologous enzymes

- **Cannot utilize xylose**
 - Not suitable for producing cellulosic biofuels
Basic strategy in metabolic engineering of xylose fermentation in *S. cerevisiae*

Scheffersomyces stipitis

- Xylose
 - XYL1
 - Xylitol
 - XYL2
 - Xylulose
 - XYL3
 - X-5-P
 - PPP and Glycolysis
 - Ethanol

- **Natural xylose fermenting**
- **Low** ethanol tolerance

Saccharomyces cerevisiae

- Xylose
- Xylitol
- Xylulose
- X-5-P
- PPP and Glycolysis
- Ethanol

- **High** ethanol tolerance
- Amenable to metabolic engineering
Laboratory evolution of an engineered *S. cerevisiae* strain for further improvement

Enrichment by serial culture in 80 g/L of xylose

Single colony isolation

Evaluation

DA24

n
Comparison of xylose fermentation capability between engineered *S. cerevisiae* and *S. stipitis*

The engineered *S. cerevisiae* strain consumed xylose almost as fast as *S. stipitis*, the fastest xylose-fermenting yeast.

Ha et al. *PNAS*, 108:504-509
Why we want to co-ferment cellobiose and xylose?

Typical fermentation profile of glucose and xylose mixture
Engineered *S. cerevisiae* strains ferment xylose only after glucose depletion

Lau M. W., Dale B. E. *PNAS* 106:1368-1373
Grand scheme of co-fermentation of cellobiose and xylose in cellulosic hydrolysate

Cellulosic biomass

Pretreatment

Hemicellulose

Xylose

Cellobiose

Cellulose

1. Lower enzyme cost

2. Higher productivity

3. Enable a continuous process

4. Facilitate efficient and rapid chemical production

S. cerevisiae DA24-16BT3

Xylose consumption ↑
Supply of NADPH ↑

Time

Xylose

XR
Xylitol

Glucose

Cellobiose transporter

β-glucosidase

Cellodextrin transporter (cdt-1)
β-glucosidase (gh1-1)

Xylose

XYL1 and mXYL1

Xylose

Xylitol

XYL2

Xylose

Xylulose

PPP

XKS1

β-glucosidase

Glycolysis

Ethanol

Ha et al. PNAS, 108:504-509
Synthesis of engineered yeast capable of co-fermenting cellobiose and xylose simultaneously

Cate group at UC-Berkeley

Transporters from *N. crassa*
NCU00801 (*cdt-1*)
NCU00809
NCU08114

β-Glucosidase
NCU00130 (*gh1-1*)

Glycolysis

Galazka et al. *Science* **330**:84-86

Jin group at UIUC

XYL1/XYL2/XYL3

PPP & Ethanol Production

Ha et al. *PNAS*, **108**:504-509

+ Xiaomin Yang at BP
Co-fermentation of cellobiose and xylose by an engineered S. cerevisiae (DA24-16BT3)

<table>
<thead>
<tr>
<th></th>
<th>OD</th>
<th>Ethanol</th>
<th>Y_{EtOH}</th>
<th>P_{EtOH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylose 40</td>
<td>16</td>
<td>13</td>
<td>0.33</td>
<td>0.28</td>
</tr>
<tr>
<td>Cellobiose 40</td>
<td>17</td>
<td>13</td>
<td>0.33</td>
<td>0.28</td>
</tr>
<tr>
<td>Cellobiose/xylose 40/40</td>
<td>23</td>
<td>32</td>
<td>0.40</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Co-fermentation of glucose, cellobiose, and xylose by strain DA24-16BT3 and S. stipitis

<table>
<thead>
<tr>
<th></th>
<th>OD (A_{600})</th>
<th>Ethanol (g/L)</th>
<th>Y_{EtOH} (g/g)</th>
<th>P_{EtOH} (g/L·hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA2416-BT3</td>
<td>25</td>
<td>48</td>
<td>0.38</td>
<td>0.99</td>
</tr>
<tr>
<td>S. stipitis</td>
<td>19</td>
<td>25</td>
<td>0.38</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Co-fermentation by an engineered industrial strain (HP111BT)

Low Initial OD (OD ~1.0)

- $Y_{E/S} = 0.38 \, \text{g/g}$
- $P_E = 1.11 \, \text{g/L-h}$

High Initial OD (OD ~10.0)

- $Y_{E/S} = 0.39 \, \text{g/g}$
- $P_E = 2.00 \, \text{g/L-h}$
Xylitol: a functional sweetener and chemical

- A very popular food additive in Asian market
 - Sugar substitute with lower calorie (2.4 cal/g)
 - Better sensory with a cooling effect
 - Good for diabetic patients and prevents dental caries
- Selected as one of the top value-added chemicals from biomass by US-DOE
Xylitol production through co-utilization of xylose and cellobiose

Current process

- Xylose
- Glucose
- XR
- NADPH
- Xylitol
- D-10

Co-fermentation process

- Xylose
- XR
- NADPH
- Xylitol
- D-10-BT
- Cellulose transporter
- β-glucosidase
- Cellobiose
- Glucose

Xylose consumption ↑
Supply of NADPH ↑
Enhanced production of xylitol without glucose repression

Glucose/Xylose

- Time (h): 0, 12, 24, 36, 48
- Glucose and Xylose (g/L): 0, 5, 10, 15, 20
- A$_{600}$, Ethanol and Xylitol (g/L): 0, 5, 10, 15, 20

Cellobiose/Xylose

- Time (h): 0, 12, 24, 36, 48
- Cellobiose and Xylose (g/L): 0, 5, 10, 15, 20
- A$_{600}$, Ethanol and Xylitol (g/L): 0, 5, 10, 15, 20

<table>
<thead>
<tr>
<th></th>
<th>OD (A$_{600}$)</th>
<th>Xylitol (g/L)</th>
<th>P$_{\text{xylitol}}$ (g/L·hr)</th>
<th>Xylitol production per sugar consumed (g/g)</th>
<th>Fermentation conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose/Xylose 20/20</td>
<td>10</td>
<td>13</td>
<td>0.28</td>
<td>0.67</td>
<td>80 rpm, 50mL</td>
</tr>
<tr>
<td>Cellobiose/Xylose 20/20</td>
<td>13</td>
<td>19 (46%↑)</td>
<td>0.40 (43%↑)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
pH controlled bioreactor fermentation

<table>
<thead>
<tr>
<th></th>
<th>Cell mass (g/L)</th>
<th>Xylitol (g/L)</th>
<th>P_{Xylitol} (g/L-hr)</th>
<th>Xylitol production per sugar consumed (g/g)</th>
<th>Fermentation conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose/xylose 40/100</td>
<td>5.5</td>
<td>49</td>
<td>0.92</td>
<td>0.77</td>
<td>500 rpm, 2vvm ph 5.5</td>
</tr>
<tr>
<td>cellobiose/xylose 40/100</td>
<td>7.4</td>
<td>85 (73%↑)</td>
<td>1.60 (74%↑)</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>
Why do we study galactose metabolism?

- Galactose is a major sugar in marine biomass

- Marine plant biomass has several attributes that would make it an attractive renewable source for the production of biofuels
 - Higher production yields per unit area
 - Can be depolymerized relatively easily compared to lignocellulosic biomass
 - Higher carbon dioxide fixation rates than terrestrial biomass
Galactose metabolism is tightly regulated in *S. cerevisiae* (strong glucose repression)

Improvement of galactose fermentation through co-fermentation with cellobiose

Diagram showing the metabolism pathways for glucose, cellobiose, galactose, and the resulting products (ethanol and CO₂) over time.
Comparison of sequential fermentation (A) and co-fermentation (B)

<table>
<thead>
<tr>
<th></th>
<th>OD ((A_{600}))</th>
<th>Ethanol (g/L)</th>
<th>(Y_{\text{ETOH}}) (g/g)</th>
<th>(P_{\text{ETOH}}) (g/L·hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose/galactose</td>
<td>16</td>
<td>21</td>
<td>0.34</td>
<td>0.60</td>
</tr>
<tr>
<td>(40 g/L and 40 g/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cellobiose/galactose</td>
<td>22 (38% ↑)</td>
<td>27 (29% ↑)</td>
<td>0.36 (6% ↑)</td>
<td>0.74 (23% ↑)</td>
</tr>
<tr>
<td>(40 g/L and 40 g/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ha et al. Appl. Environ. Microbiol. 77,5822-5826
Numerous applications of co-fermentation for producing fuels and chemicals

- Cell
- Fuels
 - Ethanol
 - Butanol
 - Fatty acid
 - Hydrocarbon
- Diversification of products
- Chemicals
 - Organic acids
 - Diacids
 - Dialcohols
 - Sugar alcohols (xylitol)
 - Sugar acids
- Extension of substrates
- Glucose
- Cellobiose + Xylose
- Cellobiose + Galactose
Summary

- Optimization of the xylose metabolic pathway and laboratory evolution drastically improved ethanol yield and productivity of engineered *S. cerevisiae*

- Co-fermentation of non-fermentable carbon sources (cellobiose and xylose) is possible by metabolic engineering
 - Cellodextrin transporter and intracellular β-glucosidase

- Engineered industrial *S. cerevisiae* showed impressive ethanol production capability

- Cellobiose and galactose co-fermentation is also feasible

- Various chemicals can be produced using the co-fermentation technology
 - Enhanced production of xylitol from cellulosic hydrolysate
Acknowledgements

Jin lab members
Suk-Jin Ha
Won-Heong Lee
Hyo-Jin Kim
Soo Rin Kim
Josh Quarterman
Qiaosi Wei
Eun-Joong Oh
Heejin Kim

EBI-Berkeley
Jamie Cate
- Jon Galazka

BP
Xiaomin Yang