Technoeconomic Evaluation of On-Farm Biodiesel Production from *Camelina sativa* in the Southeastern United States

11th Annual World Congress on Industrial Biotechnology
Track 2: Algae, Specialty Crops, and Biomass Supply
Advances in Oilseeds
Tuesday, May 13 10:30am-12:00pm

Kevin R Caffrey, Matthew W Veal, Mari S Chinn
North Carolina State University
Biological & Agricultural Engineering
What is *Camelina sativa*?

- **Plant Characteristics**
 - Agronomic
 - Fatty acid profile
- **Chemical composition**
 - Antioxidants
 - Other phenolics & flavonoids
- **Potential Markets**
 - Industrial Applications
 - Drying oil
 - Cosmetics & dermatological
 - Biofuels
 - Food & Feed
Project Objectives

• Construct Realistic Process Flows
• Calculate Feasible Product Values
• Determine Biodiesel Production Costs
• Investigate On-Farm Processing
 • Scenarios designated by farmgate product
 • Scenario 1: Grain
 • Scenario 2: Oil
 • Scenario 3: Biodiesel
Process Model
Operation Costs

- Standardization
 - March 2014 US $
 - June 1, 2009 to May 30, 2012
- Cultivation (High Cost & Realistic)
 - Land use, equipment, inputs
- Transportation
 - Freight transport, distances
- Industrial Operations
 - Crush: soybean margins
 - Biodiesel: soybean margins, no tax incentive
- On-Farm Operations
 - Extraction: seed cleaner, extruder, centrifuge
 - Biodiesel: springboard biodiesel unit
Product Valuation

• Grain
 • U.S. canola, Canadian canola
 • Corrected for oil content
• Oil
 • U.S. soybean, U.S. canola, Canadian canola
• Meal
 • U.S. soybean, U.S. canola, Canadian canola
 • Corrected for protein content
• Biodiesel
 • Average U.S. sales price
• Crude Glycerol
 • Low value market ($0.11/kg)
• Seed Trash
 • No value assigned
Agronomic System Costs

High Cost ($731/ha)
- Land 27%
- Planting 12%
- Fertilizer 33%
- Harvest 16%
- Herbicide 9%
- Storage 3%

Realistic ($486/ha)
- Land 24%
- Planting 18%
- Fertilizer 34%
- Harvest 24%
- Herbicide 0%
- Storage 0%

33% Savings

Agronomic Unit Production Costs

<table>
<thead>
<tr>
<th></th>
<th>High Cost</th>
<th>Realistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain ($/kg)</td>
<td>$0.40</td>
<td>$0.27</td>
</tr>
<tr>
<td>Oil ($/kg)</td>
<td>$1.07</td>
<td>$0.71</td>
</tr>
<tr>
<td>Oil ($/L)</td>
<td>$0.98</td>
<td>$0.65</td>
</tr>
</tbody>
</table>
Processing Operation Costs

- **Grain (112/ha)**
- **Oil (520/ha)**
- **Biodiesel (619/ha)**

Proportion of Processing Costs:
- **Transportation**
- **Oil Extraction**
- **Biodiesel Production**

Farmgate Product Processing Cost:
- Grain ($112/ha)
- Oil ($520/ha)
- Biodiesel ($619/ha)
Breakeven Production Costs

<table>
<thead>
<tr>
<th>Scenario 1: Grain</th>
<th>Scenario 2: Oil</th>
<th>Scenario 3: Biodiesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Realistic</td>
<td>Realistic</td>
<td>Realistic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grain ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
</tr>
<tr>
<td>$0.10</td>
</tr>
<tr>
<td>$0.20</td>
</tr>
<tr>
<td>$0.30</td>
</tr>
<tr>
<td>$0.40</td>
</tr>
<tr>
<td>$0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oil & Biodiesel ($/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
</tr>
<tr>
<td>$0.05</td>
</tr>
<tr>
<td>$0.10</td>
</tr>
<tr>
<td>$0.15</td>
</tr>
<tr>
<td>$0.20</td>
</tr>
<tr>
<td>$0.25</td>
</tr>
<tr>
<td>$0.30</td>
</tr>
<tr>
<td>$0.35</td>
</tr>
<tr>
<td>$0.40</td>
</tr>
<tr>
<td>$0.45</td>
</tr>
</tbody>
</table>

Legend:
- Oil
- Biodeisel
- Grain

Source:
- [NC State University](https://www.ncsu.edu)
Breakeven Production Costs

Scenario 1: Grain
Scenario 2: Oil
Scenario 3: Biodiesel

Realistic Agronomic Production System
Sensitivity Analysis Parameters

- Single Parameter - coefficient of variation
 - June 1, 2009 to May 30, 2012
- Products
 - Grain (3)
 - U.S. soybean, U.S. canola, Canadian canola
 - Oil (8)
 - U.S. soybean, U.S. canola, Canadian canola, corn oil, inedible tallow, edible tallow, white grease, yellow grease
 - Meal (3)
 - U.S. soybean, U.S. canola, Canadian canola
 - Biodiesel
- Agronomic Inputs
 - Nitrogen (5)
 - Anhydrous ammonia, nitrogen solution (30%), urea (44-46%), ammonium nitrate, sulfate of ammonium
- Grain Characteristics
 - Yield
 - Oil content
- Fuel Costs
 - Diesel
 - Electricity
Sensitivity Analysis of Farm Profitability

Grain

- Grain ($/kg)
- Yield (kg/ha)
- Nitrogen ($/kg N)
- Diesel ($/L)

Oil

- Oil ($/kg)
- Meal ($/kg)
- Yield (kg/ha)
- Nitrogen ($/L N)
- Oil (%)
- Diesel ($/L)
- Electricity ($/kWh)

Biodiesel

- Biodiesel ($/L)
- Meal ($/kg)
- Yield (kg/ha)
- Nitrogen ($/kg N)
- Oil (%)
- Diesel ($/L)
- Electricity ($/kWh)
Operational Comparisons

- **Agronomic Costs**
 - Margins similar to winter wheat

- **Industrial**
 - Crushing
 - $0.16/kg profit over soybean margins ($0.03/kg)
 - Biodiesel
 - Net loss without tax incentive

- **On-Farm**
 - Oil Extraction
 - Costs $0.28/kg more than soybean margins ($0.03/kg)
 - Extruder ($0.16/kg), Seed Cleaner ($0.08/kg), Centrifuge ($0.07/kg)
 - Biodiesel
 - $0.23/kg greater than industrial margins ($0.04/kg)
Additional Product Valuation

- Omega-3 Fatty Acids
 - Priced as DHA: $12.61/kg grain products ($0.75/kg)
- Phenolics & Flavonoids
 - Additional high value markets
- Extruder Meal
 - Oil included: $0.45/kg meal ($0.39/kg)
- Crude Glycerol
 - Proportional with futures: $0.15/kg crude glycerol ($0.11/kg)
- Cover Crop Valuation
 - Net cost of hairy vetch/rye: $79/ha
- Advanced Biofuels
 - Iso-parrafin rich jet fuel
Major Conclusions

• Agronomic production can be profitable
• Improved cultivation methods required for Southeast
• Oil extraction cost is the major inhibitor to on-farm processing
• Farmgate product has the greatest impact on farm profitability
• High value products represent important markets
• System parameters are interconnected
Multi-Parameter Volatility

US Biodiesel

Canadian Canola

US Diesel Retail Price

Crush Product Value

Oil
Meal
Oil+Meal
Soybean

March 2014 US $/L

March 2014 US $/kg

Date

Date

Date

Date

Oct-07 Feb-09 Jun-10 Nov-11 Mar-13

$0.00 $0.25 $0.50 $0.75 $1.00 $1.25 $1.50 $1.75 $2.00

$0.00 $0.20 $0.40 $0.60 $0.80 $1.00

$0.00 $0.25 $0.50 $0.75 $1.00 $1.25 $1.50 $1.75 $2.00

$0.00 $0.25 $0.50 $0.75 $1.00 $1.25 $1.50 $1.75 $2.00

Iowa
IL/IN/OH
US Average
Oil
Meal
Seed

Crush Product Value

Iowa
IL/IN/OH
US Average
Oil
Meal
Oil+Meal
Soybean
Acknowledgement

- USDA AMS - Richard Tanger & Samuel Jones