Beneficiation of by-products from biofuel plant processes for the production of an eco-friendly polyurethane foam

LC Muller, Sanette Marx, Idan Chiyanzu
Problem statement

- Increase profitability of biodiesel and bioethanol production processes
- Utilize by-products to generate additional revenue
- Minimize waste production.
Cellulosic ethanol - Lignin

- Removal of lignin from biomass improves cellulosic ethanol production yield.¹

<table>
<thead>
<tr>
<th>Agricultural waste</th>
<th>Lignin content (% of dry weight)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat straw</td>
<td>15</td>
</tr>
<tr>
<td>Corn stover</td>
<td>19</td>
</tr>
</tbody>
</table>

- US estimated 250 million gall. of cellulosic ethanol installed capacity in 2015.³
- This would require approx. 2.2 million tons of corn stover.⁴
- Many pre-treatment processes focus on the removal of lignin and lignin may likely in future be produced in large volumes as by-product.²
Biodiesel – Crude glycerol

• Produce 0.1 kg/1 kg of biodiesel through transesterification.5

• US produced 135.1 million gall. biodiesel in December 2013.6

• Crude glycerol for same period should be approx. 44000 ton.

• EIA estimates refiners receive $0.03/gallon of crude glycerol.7
Polyurethane (PUR)

• Numerous options for beneficiating aforementioned by-products being investigated to generate additional diversified revenue for refiners. Polyurethane amongst these.

• PUR made-up 7.3% of total plastic produced in Europe in 2012.\(^8\)

• U.S. PUR industry's 2010 output totalled $59.9 billion.\(^9\)

• 1.9 million tons.\(^9\)

• 44% used in building & construction, appliances and packaging. A major part in the form of rigid polyurethane foam.
Polyurethane (PUR)

HO \(\text{A} \) OH + OCN \(\text{B} \) NCO \(\rightarrow \) \(\text{A} - \text{O} - \text{C} - \text{N} - \text{B} \)_n

Diol (or polyol) Diisocyanate (or polyisocyanate) Polyurethane

- Polyurethane foam made with polyols to create a structure that is three-dimensionally highly cross-linked. The result is a rigid, light-weight foam.\(^{10}\)
- Polyols are largely petroleum derived.\(^{11}\)
- It is however possible to prepare polyols out of lignocellulose in a range of solvents. Active research into use of agricultural waste as source of lignocellulose.
Renewable polyols

Lignocellulose + Solvent \rightarrow Polyol
Liquefaction / Oxy-propylation

<table>
<thead>
<tr>
<th>Lignocellulose</th>
<th>Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat straw</td>
<td>Polyethylene glycol (PEG) + Glycerol</td>
</tr>
<tr>
<td>Soy straw</td>
<td>Crude glycerol</td>
</tr>
<tr>
<td>Corn stover</td>
<td>Crude glycerol</td>
</tr>
<tr>
<td>Corn stalk</td>
<td>PEG + Glycerol</td>
</tr>
<tr>
<td>Dried distillers grains</td>
<td>Ethylene carbonate</td>
</tr>
<tr>
<td>Waste paper</td>
<td>PEG + Glycerol</td>
</tr>
<tr>
<td>Lignin</td>
<td>PEG + Glycerol</td>
</tr>
<tr>
<td>Lignin</td>
<td>Propylene oxide</td>
</tr>
<tr>
<td>Sugarcane bagasse</td>
<td>Ethylene glycol</td>
</tr>
<tr>
<td>Wood</td>
<td>PEG + Glycerol</td>
</tr>
</tbody>
</table>
Lignin

• Proposed model structure for Pine kraft lignin.12

• "$\text{Hydroxyl groups and free positions in the aromatic ring are the most characteristic functions in lignin; they determine its reactivity and constitute the reactive sites to be exploited in macromolecular chemistry.}" 13
Crude glycerol components

- **Glycerol:**
 \[
 \begin{align*}
 &\text{HO-} \\
 &\text{HO} \\
 &\text{HO}
 \end{align*}
 \]

- **Glycerides:**
 - Monoglyceride: \[
 \begin{align*}
 \text{CH}_2\text{-O-C-} & \text{R } 1 \\
 \text{CH} & \text{- OH} \\
 \text{CH}_2\text{-OH}
 \end{align*}
 \]
 - Diglyceride: \[
 \begin{align*}
 \text{CH}_2\text{-O-C-} & \text{R } 1 \\
 \text{CH} & \text{- O-C-} \text{R } 2 \\
 \text{CH}_2\text{-OH}
 \end{align*}
 \]
 - Triglyceride: \[
 \begin{align*}
 \text{CH}_2\text{-O-C-} & \text{R } 1 \\
 \text{CH} & \text{- O-C-} \text{R } 2 \\
 \text{CH}_2\text{-O-C-} & \text{R } 3
 \end{align*}
 \]

- **Biodiesel:**
 \[
 \text{R-O-C-R}_{1,2,3}
 \]

- **Minor components:**
 Alcohol, water, catalysts, soap, free fatty acids.
Liquefaction

- Fragments lignocellulose.14

- Fragments rebind and bind to solvent chains.15

- Phenolic hydroxyl content are decreased while aliphatic primary and secondary hydroxyl groups are introduced.15

- Branched liquid polymers are formed13, with accessible hydroxyl groups17, which are suitable for rigid polyurethane formation.
Experimental

- Liquefaction: 160°C, 90min, 9:1 (weight solvent : weight lignin), \(\text{H}_2\text{SO}_4 \) catalyst.

- Technical lignins: Kraft (Softwood)
 - Lignosulfonates (Hardwood)
 - Organosolv lignin (Sugarcane bagasse)

- Crude glycerol: Transesterification of sunflower oil with ethanol.
 - Catalyst: KOH.
Results: Polyols

Polyol viscosity

<table>
<thead>
<tr>
<th></th>
<th>Kraft</th>
<th>Lignosulfonate</th>
<th>Organosolv</th>
<th>Crude glycerol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity* (mPa.s)</td>
<td>610</td>
<td>210</td>
<td>80</td>
<td>85</td>
</tr>
</tbody>
</table>

* Determined according to ASTM D4878-08

Polyol hydroxyl number (OH#)

<table>
<thead>
<tr>
<th></th>
<th>Kraft</th>
<th>Lignosulfonate</th>
<th>Organosolv</th>
<th>Crude glycerol</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH#* (mgKOH/g)</td>
<td>410</td>
<td>590</td>
<td>220</td>
<td>770</td>
</tr>
</tbody>
</table>

* Determined according to ASTM D4274-11 Method D

Liquefaction yield

<table>
<thead>
<tr>
<th></th>
<th>Kraft</th>
<th>Lignosulfonate</th>
<th>Organosolv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopolyol / Lignin (g/g)</td>
<td>5.6</td>
<td>5.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Solid residue / Lignin (g/g)</td>
<td>1.2</td>
<td>1.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Results: Polyurethane foam

<table>
<thead>
<tr>
<th>Foam properties</th>
<th>Kraft</th>
<th>Lignosulfonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength* (kPa)</td>
<td>350</td>
<td>220</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
<td>80</td>
<td>160</td>
</tr>
</tbody>
</table>

*Determined according to ASTM D1621-10
Biodegradability

- Depending on PUR application, biodegradability may or may not be desirable.

- Polyether PUR highly resistant to microbial degradation. Polyester PUR is susceptible.\(^{18}\)

- Polyols made from crude glycerol and lignin are plant derived and may therefore show enhanced biodegradability.

- Lignin contains many ether bonds and degrades slowly in the environment.\(^{19}\) Crude glycerol on the other hand contains esters.

- Crude glycerol based PUR shown to have enhanced biodegradability.\(^{20}\)
Overview: Polyurethane preparation

Byproducts
Biodiesel:

Crude glycerol

Cellulosic ethanol: → Liquefaction → Renewable polyol → Polyurethane foam

Lignin

Benefits:
- Crude glycerol and lignin are renewable.
- Crude glycerol is unrefined, minimize waste.
- Different technical lignin types suffice and yield distinctive polyols. Different types of pre-treatments methods may therefore be suitable.
- Polyurethane foam show high compressive strength.
- Potential of increased biodegradability.
References

Contact:

Prof S Marx, Pr Eng
NRF Research Chair in Biofuels
School of Chemical and Minerals Engineering
North-West University (Potchefstroom Campus)
Tel: (018) 299 1995
Fax: (018) 293 5257
Email: Sanette.Marx@nwu.ac.za
www.nwu.ac.za

Acknowledgements:

This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa. Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard.
Thank you