Transforming the cost of lactic acid and bio-propylene glycol

Phil Goodier, CEO, Plaxica Limited
Plaxica Overview

Corporate
• Heritage: Imperial College, London
• Venture backed
• Business model: Technology licensing

Mission
• Transformational technology for green chemicals
 – Cost leadership
 – Sustainable, renewable, low cost
 – Use of non-food sugars
 – Lactic acid as a low cost platform chemical
Plaxica’s Technology Addresses the Key Issues with Green Chemicals

<table>
<thead>
<tr>
<th>Green Chemistry Issues</th>
<th>Plaxica: What’s Different?</th>
</tr>
</thead>
</table>
| • Biological processes:
 – Scale up risk / cost
 – Need pure sugars | • Chemical process:
 – Known, scalable technology
 – Uses very low cost sugars |
| • Bio-ethanol focus:
 – Large market, low value
 – Subsidy-dependent | • High value, high volume markets |
| • High operating (variable) cost | • Low variable cost:
 – Much lower sugar cost (90%)
 – Hemicellulose focus |
| • High capital cost of “second generation” sugar platforms | • Integration with existing operations:
 – Paper and Pulp industry |
Lactic acid as a platform chemical

Factors limiting growth:
1. Lactic acid cost
2. "Food versus fuel"
Markets today for Plaxica’s low cost lactic acid

Proven processes with existing market demand

1. Polylactic acid
 - Input raw materials cost reduced by 70%
 - Non-food raw materials
 - Stereocomplex PLA = better performance

2. Propylene Glycol
 - $3.5BN market
 - 3% bio-based: Glycerol
 - Glycerol availability constrained (biodiesel)
 - Lactic acid is a “drop in” replacement for glycerol
 - Proven hydrogenation processes exist for LA → PG
Feedstock Strategy

- Focus on low cost, non-food sugar sources

- Work with non-fermentable sugars (C_5, C_6)
 - Paper & Pulp waste streams
 - Molasses
 - C_5 hydrolysates from “cellulose to sugar” processes
 - *If you want to make L-lactic acid from glucose or corn syrup, ferment it!*
Plaxica’s lactic acid is much lower cost than fermentation

Variable cost of production (raw materials plus energy etc.)

Lower cost lactic acid competes with petrochemicals in the C₃ value chain
Demonstration Strategy

Industrially relevant & scalable

- Process uses known and proven unit operations
- Chemical, not biological - Proven scaling strategies
- Lab → 20L → Simulation → Pilot plant → Model validation → Full Scale
Project Example: Valorising a hemicellulose waste stream from the Paper & Pulp Industry

• An industry being forced to change

Global Packaging, Graphic and Tissue Demand vs. Real Global GDP (1990 = 100)

- Digital media a threat to print media
- Competition to fibre-based packaging from plastics
- Strong tissue growth in emerging markets

Source: IMF; PPPC; RISI
Project Example: Valorising a hemicellulose waste stream from the Paper & Pulp Industry

- Large, inflexible >$1BN assets...?
- Or existing biorefineries which can be converted to produce bio-chemicals...?

Photo courtesy of Sappi Limited
Many mills are converting to “dissolving pulp”: Chemical Cellulose

- Dissolving pulp is a rare success story in the forest-products industry: high growth, high value, high ROI

Global Dissolving Pulp vs. Paper-Grade Pulp Demand (2000=100)

Source: PPC, Hawkins Wright
Project Example: Valorising a hemicellulose waste stream from the Paper & Pulp Industry
• Dissolving pulp process produces a hemicellulose by-product stream which is a perfect feedstock for Plaxica’s lactic acid process
• The additional burden on the recovery boiler can reduce pulp capacity by 20-30% compared with market pulp production
Versalac® Project Example: Valorising a hemicellulose waste stream from the Paper & Pulp Industry

Wood Chips → Pre-hydrolysis process → Pulp Process → Recovery Boiler

Lignin Removal
Sugar Hydrolysis
C₅/C₆ sugars

VERSALAC®

Versalac® reaction → Lactic Acid Purification → Lactic Acid

Closed loop reagent recovery

Electricity
Steam
Plaxica’s pre-treatment technology provides further integration & financial benefits.....

• Our process takes the hemicellulose stream and isolates:
 – Hydrolysed sugars (C5 / C6)
 – Acetic Acid – as the ester
 – Lignin

• >80% of the available carbon converted into revenue-generating products

• A true bio-refinery
Plaxica’s Biorefinery Concept

Feedstock

C₅, C₆ sugars, mixtures of C₅ & C₆ or hemicellulose

Pre-treatment

Versalac®

Racemic Lactic Acid

Optipure®

Dehydration

Hydrogenation

Products

Lignin

Acetates

Valuable by-products

Acrylic Acid

Polyactic Acid

Propylene Glycol
A significant value opportunity for the mill

- Much of the core “biorefinery” exists!
 - Significant energy integration benefits too

- Debottleneck of up to 25% for the core pulp project
 - Significant NPV, minimal market risk

- Excellent project returns – excluding the debottleneck benefit
 (a) Configured to produce 30,000Te of D-lactic acid:
 - <2 year payback
 - 40% IRR
 (b) Configured to produce 25,000Te of Propylene Glycol:
 - <2 year payback
 - 35% IRR
Propylene Glycol Production Costs

Source: IHS Study for Plaxica
July 2015
Strategic partnership signed with INVISTA
INVISTA Overview

- One of the world’s largest integrated producers of polymers and fibers
 - Primarily nylon, spandex and polyester
- History of innovation and industry leadership
 - 75 years of expertise in nylon manufacturing
 - Owns world-famous brands, including LYCRA® fiber
- 1,000+ patents, 4,600 trademarks, 10,000 employees
- Operate in 20+ countries
INVISTA Performance Technologies

• Licensing technology for the manufacture of:
 – Polyester: PTA (purified terephthalic acid); Polyester polymer; Staple fiber
 – Spandex: BDO (1,4-Butanediol); THF (Tetrahydrofuran); PTMEG (polytetramethylene ether glycol)
 – Nylon: Adipic acid; N\textsubscript{2}O abatement

• Brings INVISTA’s leading technologies into new regions of the world
 – Delivered more than 150 projects in 20 countries
 – $5 billion worth of investments being constructed or recently commissioned
 – Major presence in India and China
Plaxica / INVISTA Partnership

Benefits

- Plaxica has access to INVISTA’s considerable licensing expertise & reputation:
 - Technology development; Engineering
 - Global commercial network; Licensee support
- INVISTA participates in Plaxica’s green chemicals portfolio

Deal Structure

- Plaxica responsible for technology & IP development
- INVISTA supports commercialisation and license execution
 - Responsible for development of technology packages, FEEP, commissioning
- INVISTA takes an equity stake in Plaxica and shares future revenues
Plaxica: Summary

• Robust, low cost, chemical process
 – Lactic acid (L&D): 70% cost reduction
 – Propylene glycol & Acetates
 • Production costs compete with petrochemicals

• Feedstock focus on low cost, low purity sugars

• Exciting integration opportunities with the Paper & Pulp industry
 – Valorization of an existing hemicellulose waste stream
 – Operational benefits for the mill
 – Excellent financial returns

• Robust demonstration strategy

• INVISTA deal: global industrialization expertise
The information in this presentation, which does not purport to be comprehensive, has been provided by Plaxica Ltd (“Plaxica” or the “Company”). The Company does not make any representation or warranty, express or implied, as to the accuracy or completeness of the contents of this presentation or any other written or oral information transmitted or made available. In particular, but without limitation, no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any future projections, assumptions, targets, estimates, prospects or returns with regard to the anticipated future performance of the Company. No responsibility or liability is accepted by any such person for any errors, misstatements or omission in this presentation or any such document or information.

The recipient may wish to conduct his/her own investigation of the Company and other information contained in this presentation and should take his/her own professional advice.

Neither the receipt of this presentation by any person constitutes, or is to be taken as constituting, the giving of any legal, financial, taxation, investment or other advice by the Company.