

The Unified Field Studies of the Algae Testbed Public Private Partnership: What did we learn and where are we going?

Tuesday July 25, 2017 2:30 PM - 4:00 PM Feedstocks, Agriculture Crop Technologies and Biomass Supply One little cell, a world of possibilities.

Arizona Center for Algae Technology and Innovation

Dr. John McGowen: Director of Operations and Program Management for ATP³ Arizona State University's AzCATI

Dr. Edward Wolfrum: Data Management Lead for ATP³ **National Renewable Energy Laboratories**

National Renewable Energy Laboratories

Dr. Lieve Laurens: Analytical Lead for ATP³

Valerie Harmon: Experimental Design Lead for ATP³ Harmon Consultants, LLC

ATIONAL RENEWABLE ENERGY LABORATORY

ATP³ partners

UTEX The Culture Collection of Algae at The University of Texas at Austin SAN LUIS OBISPO

COMMERCIAL ALGAE PROFESSIONALS From Concept to Commercialization

Litree立升。

Acknowledgements

ASU

Gary Dirks John McGowen Thomas Dempster Pete Lammers Milt Sommerfeld William Brandt Jessica Cheng Sarah Arrowsmith Sarah Kempkes David Cardello Theresa Rosov Maria Bautista Kirsten LeDuc Sarran Chin Mary Cuevas **Richard Mallov** Henri Gerken Pierre Wensel Linda Boedeker Jamie Rock Sarah Mason Travis Johnson Sydney Lines UTEX Schonna Manning Jerry Brand

NREL Phil Pienkos Lieve Laurens Eric Knoshaug Ed Wolfrum **Rvan Davis Christopher Kinchin** Stefanie Van Wychen Sandia National Labs Ron Pate Todd Lane **Kunal Poorey** Patricia Gharagozloo Thomas Reichardt Jeri Timlin Jessica Drewry Pamela Lane Cal Poly Tryg Lundquist Braden Crowe Fric Nicolai **Commercial Algae** Professionals Albert Vitale Jeremey Weir Harmon Consultants Valerie Harmon Phillip Lee

Cellana

Martin Sabarsky Johanna Anton Marcela Saracco David Anton Emily Knurek Kate Evans Reyna Javar Kari Wolff Keao Bishop-Yuan Lynn Griswold Christina Boyko

ASU Undergrads Shavlin Mcghee Daniel Breyfogle Levi Bunker Thomas Chengattu Delaney DeHertogh Mark Ford **Riley Greer Dilon Hurley** Kevin Lawson Shelby Lui **Carlos Luna Miguel Martinez** Joe Palaski **Casey Peterson** Jeremy Poet Alexandra Prassas Sherry Saethao

Florida Algae Steven Schlosser Chris Withstandley Mary Riddle Nancy Pham Ho (FIT)

Jay Tenison

Jessica Vaughn

Wyatt Western

GT Undergrads

Frazier Woodruff

Patricia Penalver-

Allison Dunbar

Allison Carr

Sichoon Park

Priya Pradeep

Terry Snell

Mykal Ybarra

Fariha Hassan

Jerry Duncan

Shusuke Doi

Hao Fu

Argueso

Georgia Tech

Yongsheng Chen Steven Van Ginkel Thomas Igou Yingiang Sun Zixuan Hu

Catherine Achukwu Christine Yi **CP Undergrads** Avdee Melgar Gulce Ozturk Kaitlyn Jones Michael Antoine Trung K Tran Jake Bender Heather Freed Daniel McBroom Michele Hendrickson Gerard Nguyen Deven Diliberto Jack Sunderland Dan Averbuj Ann Marie Sequeira Lauren Miller

Michele Hendrickson Emily Wang Jack Sunderland Ann Marie Sequeira Soroush Aboutalebi Lauren Miller Samantha Lui Michele Hendrickson Gabriella Campos Will Briles Letty Thottathil

Innovation at Work

Arizona Center for Algae Technology and Innovation

The Arizona Center for Algae Technology and Innovation (AzCATI) was formed in 2010 through federal stimulus funding designated by the Science Foundation of Arizona to serve as a hub for research, testing, and commercialization of algae-based technologies and products.

Strain development for multiple applications Carbon capture and bioremediation from industrial/municipal/Ag sources Development of next generation algal mass culture systems and processes System scale-up and systems/processes integration Evaluation of algae products/coproductsclucate

LCA and techno-economical assessment of algae-based biotechnologies Development of State/National test bed facilities

ATP³ national "open" test bed

A key priority for AzCATI was the development of test bed facilities that can be State and National resources for universities, industry and the National Laboratories.

Provide increased stakeholder access to algae facilities, expertise, and high quality services across the country.

Perform long term cultivation trials provide high impact data for technoeconomic and life cycle assessments.

Standardized framework of methods and metrics for multi-site outdoor cultivation trials

Goal Statement

Establish a sustainable network of regional testbeds that empowers knowledge creation and dissemination within the algal R&D community, facilitates innovation, and accelerates growth of the nascent algal biofuels and bioproducts industry.

Outcomes:

- Increased stakeholder access to high quality, outdoor cultivation and laboratory facilities
 - Over 40 different testbed clients and >60 completed projects in 4+yrs.
 - Mix of national lab, academic and industrial stakeholders
 - 12 education/training workshops held at 3 ATP³ sites and 2 additional sites
- Support DOE's techno-economic, sustainability, and resource modeling activities and close critical knowledge gaps and inform robust analyses of the state of technology for producing algal biofuels and bioproducts
 - ATP³ cultivation data the prime source for 2015, 2016, and 2017 BETO SOT
 - ATP³ has set high data quality standards with 3+ yrs of cultivation data that is completely available to the public
 - Data already seeing use beyond ATP³ teams and BETO SOT

ATP³ Primary Objectives

Strain Identificatio & Isolation

Biomass Production & Supply

* Cerca Corpora

ATP³ offers access to a wide array of services,

capabilities and facilities:

CAL POLY

Regional testbed facilities for the partnership are physically located in Arizona, Hawaii, California, Georgia, and Florida.

Analytical Services

Collaborative Open Testbeds

- Form a national network
- Provide access to stakeholders
- Share knowledge, accelerate learning
- Accelerate R&D outcomes
- Reduce technology and business risk

Collect and Distribute High Impact Data

- Unified research programs
- Pipeline for collection of high-quality cultivation data to support algae computational modeling including biomass productivity, technoeconomic, and life cycle assessment.
- Make data available publically

Approach: Project Timeline

Phase 1 M1-12

Major Milestones

- ATP organization,
 systems and processes
 established
- Methodologies
 harmonized
- Initial cultivation trial and detailed experimental planning completed

Critical Success Factor: Network established and experimental framework validated demonstrating readiness to proceed with the long term cultivation trails

> Successful Go/No Go February 2014

Phase 2 M13-36

Major Milestones

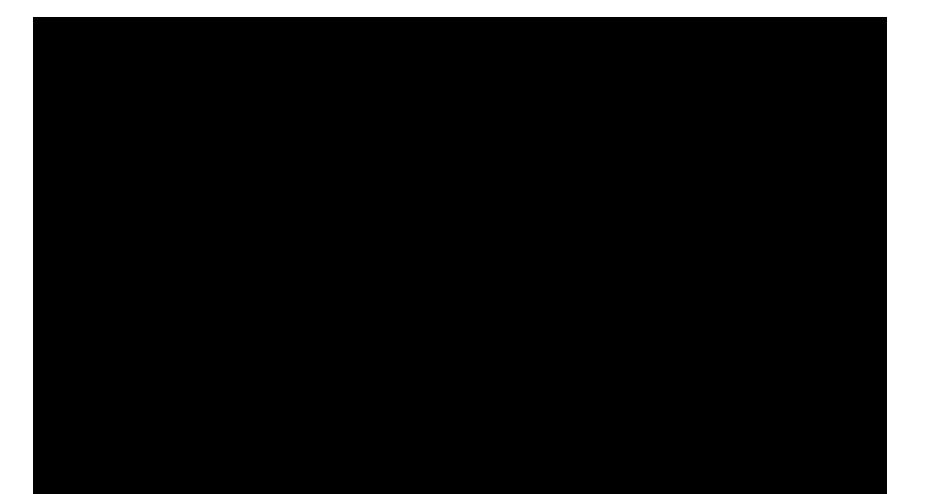
- Cultivation trials complete
- Data made widely available
- State of algal biofuels technology design report completed (2015)

Critical Success Factor: Capability of testbed network to serve stakeholder community demonstrated

Successful Go/No Go March 2016 (with scope change to extend multisite cultivation trials into Phase 3)

Phase 3 M37-60


Major Milestones


State of algal biofuels technology **design report** updated (2016 and 2017)

Critical Success Factor:

- Value proposition validated and funding secured to sustain network in out years
- Requires a robust algal industry seeking access to user facilities and expertise
- CONTINUED, ROBUST FEDERAL SUPPORT NEEDED

ATP³: Open for Business

Sandia National (Ů) CAL POLY Los Alamos Idaho National Laboratory SEAREN **OLD DOMINION** Innovative water treatment so Laboratories SAN LUIS OBISPO NATIONAL LABORATORY PennState **Project Activities:** NCCNRC biomass supply (1-100's kg) MINES aps equipment testing Delivering more than **Pacific Northwest** ✓ analytical testing NATIONAL LABORATORY ✓ Culture maintenance and scale up nrg he *Reliable* One \checkmark genetically engineered algae field trials Creative Technolog ✓ Education and Training Workshops MORGAN HILL BioEnergy **Project Benefits:** access to facilities to (intel) BlueOcean NutraScienc evodos drive technology R&D, de-risk and Techverse. Inc. validate technological innovations Advancing Energy Technologies >40 individual clients to date AlgEternal subitec * >60 completed projects heliae HelioPure 🌔 >\$800K in additional TB revenue LIQ O FLUX **BioCellection Inc.** Litree立升 PRODUCTS MARKETS INVESTORS GENOL alass made of ideas OFUELS COMMERCIAL ALGAE PROFESSIONALS Innovations that transform Advanced AgroBioFuels eed, fuel and chemicals for the future

Education and Training

Demographics of Participants			
By Discipline	Count		

Academic

Industry

Government/Labs

•	
By Geography	Count
Local	10
US national	71
International	44

Approximately 50% of the participants were students and educators - the majority of these have engineering backgrounds

Less than 30% of participants had exposure to basic lab techniques

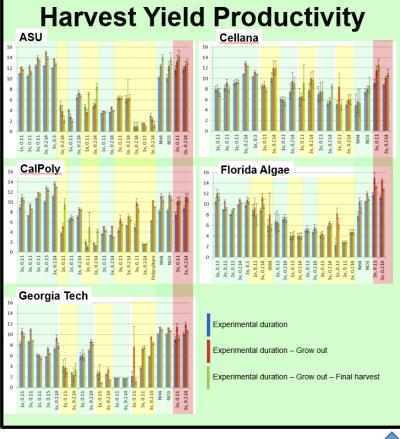
59

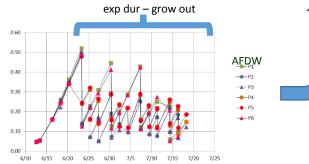
50

16

- ATP³ has hosted 12 educational workshops to date (~3/yr)
- Over 125 participants
 - add'l~150 engaged through miniworkshops at PSA
- Week-long workshops
 - Over 30 lecture modules
 - Over 15 hands-on field site and laboratory activities
- Demonstrated ability to go "on the road"
 - Multiple ATP³ sites (AzCATI/UTEX/NREL) as well as other collaborator sites (LANL/SFCC) utilized
 - Important for future expansion of the E&T program we can partner with new sites

Algae Testbed


ATP³ set standards and conducted harmonized, rigorous, and objective **long term cultivation trials** to provide a realistic assessment of the **state of technology** for algal based biofuels and bioproducts.


- Our Unified Field Studies (UFS) at the testbed sites along with our Advanced Field Studies (AFS) enabled comparisons of promising production strains at meaningful scale across variable conditions
- Our Scientific Data Management System and validated, harmonized SOP's for analytical and production processes ensured data integrity across all sites
- Our protocols and data from the UFS and AFS are publicly available and provide a critical resource to TEA and LCA analysis yielding high impact, validated data <u>http://en.openei.org/wiki/ATP3</u>

Unified Field Study Productivity: Informing Current State of Technology

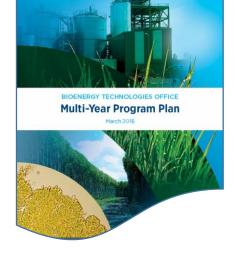
Season	2015 SOT (ATP ³)	2016 SOT (ATP ³)	2016 SOT (ABY1 Performer)	2020 Projection	2022 Design Case
Summer	10.9	13.3	17.5	27.4	35.0
Spring	11.4	11.1	13.0	22.9	28.5
Fall	6.8	7.0	7.8	19.6	24.9
Winter	5.0	5.0	4.8	9.1	11.7
Average	8.5	9.1	10.8	19.7	25.0
Max variability	2.3:1	2.7:1	3.6:1	3:1	3:1
MBSP (\$/ton, 2014\$)	\$1,227	\$1,171	\$1,031	\$598	\$494

ATP3 cultivation data and methods available at:

http://www.nrel.gov/docs/fy17osti/6 7289.pdf

Algae Testbed

Use of Cultivation Data from the Algae Testbed Public **Private Partnership as Utilized** in NREL's Algae State of Technology Assessments


Eric Knoshaug, Lieve Laurens, Christopher Kinchin, and Ryan Davis National Renewable Energy Laboratory Golden Colorado

ENERGY

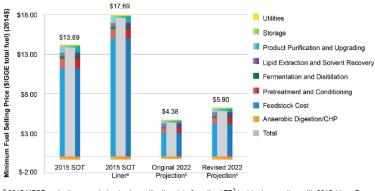

High Impact Data: Informing Current State of Technology

Table A-2: Unit Operation Cost Contribution Estimates (2014\$) and Technical Projections for Algae Farm²

http://www.energy.gov/sites/ prod/files/2016/07/f33/mypp _march2016.pdf

Processing Area Cost Contributions & Key Technical Parameters	Metric	2015 SOT *	2015 SOT (Fully Lined) *	2022 Projection
Biomass Selling Price	\$/ton AFDW	\$1227	\$1641	\$494
Production Cost	\$/ton AFDW	\$1069	\$1483	\$409
Harvest/Dewatering Cost	\$/ton AFDW	\$116	\$116	\$64
Other Cost (Facility Circulation, Storage)	\$/ton AFDW	\$42	\$42	\$21
Gross Biomass Production Yield	ton AFDW/acre-year	12.4	12.4	37.5
Total Farm Power Demand	KWh/ton AFDW	860	860	407
Production				
Total Cost Contribution	\$/ton AFDW	\$1069	\$1483	\$409
Capital Cost Contribution	\$/ton AFDW	\$629	\$1015	\$213
Operating Cost Contribution	\$/ton AFDW	\$440	\$468	\$196
Cultivation Productivity (Annual Average)	g/m²/day AFDW	8.5	8.5	25
Max Seasonal Production Variability	max:min productivity	2.3:1	2.3:1	3:1
Lipid Content	dry wt% as FAME	27.4%	27.4%	27.4%
N Content	AFDW wt%	1.8%	1.8%	1.8%
CO2 Utilization Efficiency	% utilized for biomass	90%	90%	90%
Gross CO2 + Nutrient Cost Contributions ^b	\$/ton AFDW	\$124	\$124	\$120
Operating Days Per Year	days/year	330	330	330
Biomass Concentration at Harvest	g/L AFDW	0.27	0.27	0.5
Dewatering				
Total Cost Contribution	\$/ton AFDW	\$116	\$116	\$64
Capital Cost Contribution	\$/ton AFDW	\$93	\$93	\$52
Operating Cost Contribution	\$/ton AFDW	\$23	\$23	\$12
Gross Dewatering Efficiency °	%	87%	87%	87%
Net Dewatering Efficiency °	%	99%	99%	99%
Final Concentration of Dewatered Biomass	g/L AFDW	200	200	200
Dewatering CAPEX	\$/MGD from cultivation	\$18	\$18	\$6

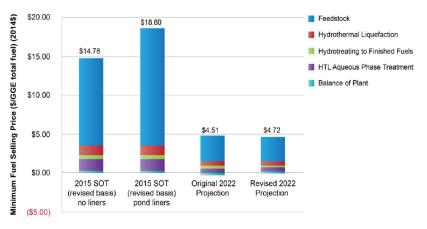

^a 2015 MBSP projections are derived using cultivation data from the ATP³ test-bed consortium with 2015 Algae Farm design report and 2014 ALU design case assumptions.
 ^b Original 2022 projection based on 2014 ALU design report (assumed biomass feedstock)⁴⁸
 ^c Revised 2022 projection based on undified ALU design case (modeled biomass feedstock)⁴⁹

Figure 2-17: Cost contribution by process area for CAP Pathway

\$1,800 Outside Battery Limits \$1,641 Dewatering \$1,600 20 Ponds + Inoculum Š \$1,400 Fixed Operating Expenses \$1,227 \$1.200 Other Variable Operating Expenses Nutrients \$1,000 CO. \$800 \$600 \$494 Bio \$400 Algal \$200 \$0 2015 SOT^a 2015 SOT+Linersª 2022 Projection^a

^a 2015 MBSP projections are derived using cultivation data from the ATP³ test-bed consortium with 2015 Algae Farm design report assumptions.

Figure 2-16: Cost contribution for algal biomass selling price by process area

Figure 2-18: Cost contribution by feedstock and conversion process area for HTL Pathway

⁴⁴ ATP³ Algae Testbed Public-Private Partnership, <u>http://en.openei.org/wiki/ATP3</u>.

⁴⁵ R. Davis, et al. (2015), Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion, National Renewable Energy Laboratory, NREL/TP-5100-64772, <u>http://www.nrel.gov/docs/fy16osti/64772.pdf</u>. ⁵⁰ Jones et al. (2014), Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading, Pacific Northwest National Laboratory, PNNL-23227, http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23227.pdf

ATP³ Summary

- From 2013 through December 2016, over 75 individual experiments have been conducted across the network with an average duration of at least 40 days
- Major outcomes:
 - Standardized, validated methods with an emphasis on continuous improvement
 - 10 strains utilized in outdoor cultivation experiments with the majority of multi-season data coming from 3 strains with average run time of >40 days
 - Data and experimental protocols for the UFS (Fall 2013 through Summer of 2015) curated and posted on ATP³'s OpenEl.org web portal. <u>http://openei.org/wiki/atp3</u>
 - Advanced field study data sets currently under curation and will be loaded by Q4 2017.
 - ATP³ generated productivity data were the primary data sets supplied to the DOE sponsored SOT reports for 2015, 2016 and will be again for 2017
 - Data beginning to be used by outside groups (2 publications submitted by researchers not affiliated with ATP3 to date)
 - Strong E&T program that is well recognized as a key resource to the stakeholder community
- Novel platforms for pond ecology monitoring and real-time monitoring of culture density and health, demonstrating ATP³'s capability for deploying new technology into an active R&D pilot facility
- Novel methodology developed to quantify pond reliability metrics a nascent idea in the research community but key to long term deployment and viability
- While overall customer base remains challenging for sustainably supporting a test bed network
 without ongoing federal support ATP³ has demonstrated the ability to work collaboratively across
 the algal value chain

John McGowen: Director of Operations and Program Management for ATP³

Edward Wolfrum: Data Management Lead for ATP³ **National Renewable Energy Laboratories**

National Renewable Energy Laboratories

Arizona State University's AzCATI

Dr. Lieve Laurens: Analytical Lead for ATP³

Valerie Harmon: Experimental Design Lead for ATP³ Harmon Consultants, LLC Public-Private Partnership

RENEWABLE ENERGY LABORATOR

