Lignin - A Renewable Chemical Feedstock for the Future:

BIO Pacific Rim Conference
October 12, 2012
Vancouver, BC
Lignol Energy Corporation (TSXV: LEC)

- World class biorefining technology:
 - Renewable fuels and chemicals
 - High-value cellulose products
 - Unique High Purity Lignin

- Partnerships with leading companies in target industrial sectors

- Powerful IP portfolio: 90 patents in prosecution (12 granted)*

- Technology proven in integrated pilot-scale biorefinery
 - $50 million invested to date
 - Govt. funding awarded to date: $30 MM / $4MM pending
 - Ready for commercial deployment upon securing off-takes for key products
Value Streams from Lignol’s Biorefinery

AlcellPlus™
Organosolv Biomass Extraction

Biomass
- Hardwoods, Softwoods, Agri Residues

Cellulose

Cellulose Derivatives

Sugars

- Xylose, xylitol

Hemicellulose Derivatives

Mixed Sugars (C5 +C6) & Chemicals

Furan chemicals
- Furfural
- Furfuryl alcohol
- HMF

Biofuels
- Ethanol
- Bio-butanol
- Drop-in fuels

Fermentation-based biochemicals

Lignin Derivatives

HP-L™ lignin

Petrochemical Substitution
- Phenol
- Isocyanates
- Furans
- Plastics
- Coatings

New Functional Products
- Carbon fiber
- Antioxidants
- Adsorbents
- Feed additives
Established Lignin Industry

- Exclusively byproducts of fiber processing
 - Sulfite, Kraft and Soda Pulping
 - Wood and agricultural residues
- Well established applications based on the distinct chemical and physical properties of these technical lignins:
 - Chemically condensed
 - Chemically modified by pulping conditions
 - Non-lignin components:
 - Sulfur
 - Inorganics
 - Carbohydrates
- Estimates vary but this is a $2-3 billion business today
Lignin-based products in today’s market – sulfite pulping

- Lignosulfonates
 - Sulfite pulping
 - Water-soluble
 - 1 million tonnes per year
 - $1.0 – 3.0/kg ds
 - Market dominated by Borregaard and Tembec
 - $2-3 billion business worldwide

Applications
- Concrete Additives
- Animal feed pellets and molasses
- Pesticide dispersant
- Oil well drilling mud
- Dust control
Lignin-based products in today’s market – kraft pulping

- Kraft Lignins
 - Kraft (alkaline sulfide) pulping
 - Water insoluble (unless sulfonated)
 - 80-100,000 tonnes per year
 - $2.0 – 6.0/kg ds
 - MeadWestvaco is the major player

Applications
- Ag. Chemicals
- Dyestuffs
- Concrete
- Lead-acid batteries
- Resins
- Bitumen

Price
Lignin History – Unrealized Potential

- In 1838 Anselme Payen identified a substance released by the nitric acid treatment of wood.
- He referred to this substance as “encrusting material”
- This encrusting material is the largest non-petroleum source of the aromatic nucleus and the world’s second most abundant naturally occurring polymer.
- Today (after 174 years) approx. 50 Million metric tons of lignin are separated from wood annually by the world’s pulp mills
 - Mostly burnt for energy (which is essential for chemical recovery)
 - Most pulp mills have excess energy
- Only 1.1 million metric tons per year of lignin (~2%) are sold mainly as sulfonated lignin
- In spite of its massive potential, lignin is barely commercialized
- Why?
Some reasons….

- **Perception**
 - Lignin is seen as a waste product and has a high heating value!

- **Purity**
 - Most available lignin is contaminated, not sufficiently pure for many applications; highly heterogeneous

- **Petro-chemicals do it better**
 - Putting lignin into chemical systems and products that were designed for other types of chemicals like petro-chemicals is challenging (technically and commercially)

- **Difficult chemistry**
 - Lignin is a strongly self-associating, reactive, broad mixture of molecular species; highly reactive

- **Lack of knowledge**
 - Still large gaps in our knowledge of lignin and its chemistry
Unique market opportunities for HP-L lignin

- Lignol process extracts lignin fragments to produce valuable functional molecules which make up HP-L lignin
- Highly differentiated from commodity pulp mill lignin
 - High purity; low ash content, essentially sulfur-free
 - Lower molecular weight and polydispersity
 - Chemically reactive in many established chemical industry systems and products
 - Attractive to developers of new materials such as carbon fibre, films and polymers
- Market opportunities to deploy HP-L lignin in several major industrial sectors:
 - Automotive
 - Industrial equipment
 - Wood products
 - Chemicals and polymers
 - Construction
HP-L Lignin Applications Development

• Focus of Lignol’s development today is on incorporating HP-L lignin into product formulations as a substitute for incumbent petrochemicals
• Many companies are evaluating HP-L lignin in high-volume product sectors:
 – Resins
 – Coatings
 – Thermoplastics
 – Carbon fibre
 – Building materials
 – Foams
 – Wood composites
 – Adhesives
 – Filtration
• Lignol is working closely with corporate partners, Universities and Institutes to maximize breadth of application development
Key Resin Systems – Applications for HP-L

- Phenol Formaldehyde Resins
 - Foundry
 - Friction
 - Insulation
- Furan Resins
 - Molding Compounds
- Polyurethane Resins
 - Wood Products
 - Composite Materials
 - Coatings
 - Adhesives

High Purity Lignin
Displacement of Conventional Chemicals by HP-L

- Achieved displacement levels controlled by chemistry and stage of development - some examples:

<table>
<thead>
<tr>
<th>Application</th>
<th>Host Chemical</th>
<th>Achieved Displacement</th>
<th>Scale</th>
<th>Target Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSB (& MDF)</td>
<td>PF resin pMDI</td>
<td>25% 40%</td>
<td>Commercial</td>
<td>50% 50%</td>
</tr>
<tr>
<td>Rigid foam insulation</td>
<td>PF resin PIR</td>
<td>10% 5%</td>
<td>Industrial Lab</td>
<td>30% 30%</td>
</tr>
<tr>
<td>Coatings</td>
<td>Epoxy</td>
<td>10%</td>
<td>Lab>Pilot</td>
<td>30%</td>
</tr>
<tr>
<td>Foundry resins</td>
<td>Furan</td>
<td>15%</td>
<td>Commercial</td>
<td>30+%</td>
</tr>
<tr>
<td>Friction binder</td>
<td>PF resin</td>
<td>40%</td>
<td>Commercial</td>
<td>50%</td>
</tr>
<tr>
<td>Thermoplastics</td>
<td>Various</td>
<td>30%</td>
<td>Pilot</td>
<td>50%</td>
</tr>
<tr>
<td>Carbon fibre</td>
<td>None</td>
<td>100%</td>
<td>Pilot</td>
<td>90-100%</td>
</tr>
</tbody>
</table>
Future directions for HP-L lignin development

• The future for HP-L Lignin – next generation uses and applications:

 – Bridging knowledge gaps in lignin physics and chemistry
 • Solubility, reactivity, rheology, mode of action in target systems
 – Development of products based on HP-L Lignin rather than using it as an additive or substitute ingredient
 – Development of feed, food and nutraceutical applications
 – Fractionation into narrower ranges of chemical composition
 – Chemical modification to create specific functionality
 – Breakdown into aromatic building blocks

• Priority and direction will be determined by economics and by partner priorities
Thanks